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ABSTRACT 
Reflections in antenna test ranges can often be the largest 
source of measurement error within the error budget of a 
given facility [1].  Previously, a technique named 
Mathematical Absorber Reflection Suppression (MARS) 
has been used with considerable success in reducing range 
multi-path effects in spherical near-field antenna 
measurements [2, 3, 4, 5].  Whilst the technique presented 
herein is also a general purpose measurement and post-
processing technique; uniquely, this technique is applicable 
to cylindrical near-field antenna test ranges.  Here, the post-
processing involves the analysis of the cylindrical mode 
spectrum of the measured field data which is then 
combined with a filtering process to suppress undesirable 
scattered signals. 

This paper provides an introduction to the measurement 
technique and a description of the novel near-field to far-
field transform algorithm before presenting preliminary 
results of actual range measurements.  These results 
illustrate the success of the technique by showing a circa 
10 to 20 dB reduction in spectral reflections (i.e. a 
reduction in the scattering from a known scatterer within 
the measurement environment) which is comparable to the 
degree of improvement attained with the pre-existing, 
comparable, spherical MARS technique. 

Keywords: Near-Field, Antenna Measurements, Reflection 
Suppression, Cylindrical Mode Expansion, MARS. 

1. Introduction 

This paper describes new a technique which has been 
developed by NSI in order to suppress reflections in a 
cylindrical near-field antenna test range.  Here, a unique 
measurement and mathematical post processing technique 
is implement that, as will be shown below, requires a 
minimum amount of detailed information about the AUT, 
probe and range geometry.  The processing is applied 
during the near-field to far-field transformation process and 
is implemented efficiently by means of the fast Fourier 
transform (FFT) algorithm.  The technique is entirely 
generic in nature and can be applied to a variety of different 
antenna types, i.e. no specific a priori assumptions about 
the type of AUT are made.  In essence, a new mathematical 
operator is applied to the measured data that orthogonalises 
those field associated with the AUT from those fields 
associated with other spurious sources.  In this way, the 
unwanted contributions can be effectively filtered out.  

However, successful processing requires that a larger 
amount of data be taken during the measurement process 
than would be the case for an equivalent measurement of an 
identical antenna installed within an ideal anechoic 
environment.  Thus, the price of the filtering is an increase 
in the time required to take a near-field measurement. 

2. Overview of Measurement Technique & Transform 

Typically, an antenna is installed within a near-, or far-field 
facility such that it is displaced in space as little as possible 
during the course of a measurement.  As range multi-path 
tends to disturb the fields illuminating the test antenna, the 
purpose of this strategy is to insure that the field 
illuminating the test antenna changes as little as possible 
during the course of the acquisition.  However, the MARS 
measurement technique adopts a fundamentally opposing 
strategy where by the test antenna is deliberately displaced 
from the centre of rotation.  This has the effect of making 
the differences in the illuminating field far more 
pronounced than would otherwise be the case, and it is 
exactly this greater differentiation that makes their 
identification and subsequent removal viable.  Figure 1 
below shows an AUT installed within a typical cylindrical 
near-field measurement system, centred about the origin of 
the range co-ordinate system.  Figure 1 also shows the (z-
axis truncated) conceptual smallest cylinder that 
circumscribes the majority of the current sources which is 
coaxial with the sampling cylinder that is formed from the 
intersection of linear and rotational axes. 

It is well known that the electromagnetic fields outside an 
arbitrary test antenna radiating into free space can be 
expanded into a set of orthogonal cylindrical mode 
coefficients (CMCs) and that these modes and coefficients 
can then be used to obtain the electric and magnetic fields 
everywhere in space outside of a conceptual cylindrical 
surface which encloses the radiator [6, 7, 8].  The CMCs 
are determined from the measured data in a very efficient 
manner through the use of the FFT.  Once obtained, these 
mode coefficients are corrected for the spatial filtering 
properties of the near-field probe to determine the true 
AUT transmitting CMCs.  A highly efficient FFT based 
summation process is then utilised to obtain the asymptotic 
far electric field.  Parameters such as copolar, cross-polar, 
axial ratio, tilt angle, directivity and gain of the AUT are 
obtained from the electric field where the resulting pattern 
data is tabulated on a regular azimuth over elevation co-



ordinate system and resolved onto a Ludwig II, azimuth 
over elevation polarisation basis. 

 
Figure 1 – Cylindrical measurement system showing 

conceptual cylindrical maximum radial extent. 

When expressed in component from, and when assuming 
an infinitesimal Hertzian dipole probe is employed as a 
near-field probe (this assumption is merely introduced to 
simplify the pedagogy), the two sets of orthogonal CMCs 
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Here, the Fourier variable γ can take on all real values from 
negative to positive infinity and the modal index can take 
on all real values from negative to positive infinity.  Here, φ 
and z are used to denote the azimuthal and linear cylindrical 
co-ordinates respectively with γ and z being conjugate 
variables.  ρ0 is the radius of the measurement cylinder, k0 
is the free-space wave number, ( ) ( )zH n

1  is the Hankel 
function of the first kind, ( ) ( )zH n

1′  is the derivative of the 
Hankel function of the first kind, and j is the imaginary 
unit.  Crucially, both (1) and (2) are in a form that is 
instantly amenable for processing with the efficient two-
dimensional FFT algorithm although this results in the use 
of non-integer mode indices.  Once the transverse electric 
(TE) and transverse magnetic (TM) CMCs have been 
determined, by utilising the large argument values of the 
Hankel function and the derivative of the Hankel function, 
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Thus, the asymptotic far-field pattern can be obtained from 
a simple summation of mode coefficients as follows, 
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Here, and as per the usual convention, the unimportant far-
field spherical phase factor and inverse r term have been 
suppressed.  Similarly, (5) and (6) are in form that can be 
evaluated with the use of a one-dimensional inverse FFT.  
The maximum mode index N is given by, 
 100 += trkN  (9) 
Where rt is the maximum radial extent (MRE) which 
includes a “safety” margin of 10 [9].  Unfortunately, in 
practice for some antennas the size of the MRE may not be 
obvious.  As only propagating modes can contribute to the 
far-field pattern, the Fourier variable γ can be limited to ±k0 
as these represent the highest order propagating mode 
coefficients.  This also places a limit on the sample spacing 
required to obtain alias free data.  As the sample spacing zδ  
(i.e. the resolution) in the linear axis is determined from the 
maximum value of γ, we can write that 2λδ =z  where λ is 
used to denote the free-space wavelength.  Similarly, the 
sample spacing in the angular dimension is obtained from 
the highest order mode index [9], 
 ( )122 += Nπδφ  (10) 

Clearly then, by displacing the AUT away from the centre 
of rotation, the MRE is increased.  This decreases the 
sample spacing which increases the amount of data needed 
and therefore time required to acquire the complete near-
field data set.  The last remaining parameter that needs to 
be determined is the range length, i.e. the radius of the 
conceptual measurement cylinder.  This is specified as 
being the larger of the two following requirements [9], 
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Where, rp is the maximum radial extent of the probe.  This 
quantity would have been determined during the probe’s 
auxiliary pattern calibration.  Once the probe corrected 
electric far-fields have been determined, the phase 
reference can be displaced by means of the application of a 
simple differential phase change [10], i.e., 
 ( ) ( ) rkj

t erErE ⋅∞→=∞→ 0,,,, φθφθ  (12) 

Here, r denotes the displacement vector between the centre 
of the measurement co-ordinate system and the centre of 
the aperture of the AUT.  Crucially, whilst in principle all 
we have done is to mathematically translate the AUT back 
to the centre of the measurement co-ordinate system, this 
has the corresponding effect of reducing the number of 



CMCs that are required to represent the radiated field.  That 
is, we have reduced the MRE to a conceptual (i.e. 
optimised) minimum value.  The equivalent cylindrical 
mode coefficients that represent the displaced antenna can 
be obtained from an inversion of equations (5) and (6) 
which again can be evaluated numerically through the use 
of the one-dimensional inverse FFT.  Thus, 
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The factor of 2π is introduced on the denominator in (13) 
and (14) to preserve the correct normalisation of the CMCs.  
Once the cylindrical mode coefficients for the, now ideally 
centrally located, AUT have been recovered, any mode 
representing fields outside the ideal MRE can be filtered 
out thus removing contributions that are not associated with 
the AUT.  This is determined using [8], 
 ( ) ( )200

2
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2
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Here, rt0 denotes the optimum MRE, rather than the actual 
MRE as taken from the near-field measurement where 

0tt rr > .  The mode cut-off is based on the fact that modes 
above a certain index number are exponentially attenuated 
and do not contribute to the far-field.  Thus in effect, the 
mode cut off is determined by the physical dimensions of 
the AUT.  The final step in the processing is to reconstruct 
the filtered far-field antenna pattern from equations (5) and 
(6).  The cylindrical MARS algorithm can be summarised 
as follows: 

1. Take the two orthogonal tangential electric cylindrical near-
field components (Eφ, Ez) and perform a 2-D FFT on each 
component. 

2. Compute ( )γ1
nB  and ( )γ2

nB  from the results of the 2-D FFT 
of each measured field component. 

3. Solve for the Antenna’s unknown cylindrical mode 
coefficients using previously computed probe pattern 
coefficients. 

4. Perform a 1-D FFT to obtain the far-field azimuth antenna 
pattern for a particular elevation angle.  Compute the complete 
far-field pattern by repeating this for each discrete elevation 
angle. 

5. Apply a differential phase change to mathematically translate 
the AUT back to the origin of the measurement co-ordinate 
system. 

6. Perform a 1-D IFFT to obtain the translated CMC of the AUT 
for a particular γ.  Repeat this for each discrete value γ. 

7. Apply two-dimensional mode filtering function to suppress 
unwanted CMCs. 

8. Perform a 1-D FFTs to obtain far-field azimuth antenna 
pattern for a particular elevation angle.  Compute the complete 
far-field pattern by repeating this for each discrete elevation 
angle to obtain the MARS filtered AUT pattern function. 

Whilst a certain degree of effort is required to calculate the 
CMCs from the far-field pattern, and then reconstruct the 
far-field pattern from the filtered set of CMCs, as neither of 
these operations requires us to compute a Hankel function 
(or their derivative), and since the transforms are evaluated 
with the FFT, these operations are actually very cost 
effective in terms of computational effort, especially when 
compared to other alternative strategies. 

3. Preliminary Measured Results 

In order that the new measurement and post-processing 
technique could be verified, an NSI-200V-3x3 combination 
planar/cylindrical/spherical system was used to test a 12” 
wide by 11.6” high x-band slotted waveguide planar array 
antenna. 

 
Figure 2 – NSI-200V-3x3 PCS System measuring slotted 

array antenna in the presence of a reflecting plate. 

This system was installed in one of NSI’s small, partially 
lined anechoic chambers and included, and employed an 
Agilent 85301b RF subsystem.  A small removable 
reflecting plate was installed within the chamber to 
maximise the scattering and create a “worst case” 
configuration.  This arrangement can be seen presented in 
Figure 2 where it is also worth noticing that much of the 
scanner’s structure is not covered with absorber which 
further exacerbates the scattering. 
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Figure 3 – Schematic of NSI-200V-3x3 PCS System. 



When taking a standard cylindrical near-field measurement, 
certain parameters are required to be specified.  These are 
the frequency, 9.2 GHz, the radius of the measurement 
cylinder, 24.625”, the MRE, 16”, the required far-field 
azimuth, 360°, and elevation, ~20° spans.  In addition to 
this, a pattern for the near-field probe is also required.  As 
an NSI-RF-WR90 open-ended rectangular waveguide 
probe was used, a theoretical probe pattern was employed 
to correct the measured data [11].  In addition to this, for 
the purposes of cylindrical MARS testing, the displacement 
between the centre of the range measurement co-ordinate 
system and the AUT, and the conceptual minimised MRE 
are also needed.  These were 15” and 6.3” respectively.  
This arrangement can be seen presented schematically in 
Figure 3. 

CMCs are complex numbers that are functions of the 
polarization index, the φ index n and the Fourier variable γ.  
Figure 4 contains a plot of the amplitudes of the CMCs 
modes for s = 1, i.e. B1, for this measurement which were 
generated by the regular cylindrical processing of the 
measured cylindrical near-field data. 

 
Figure 4 – B1 CMCs derived directly from 

measured near-field data. 

The offset in the near-field measurement causes the phase 
of the scattered signals to vary rapidly over the 
measurement cylinder and to produce the higher order 
modes shown.  Clearly, the CMCs obtained from the near-
field measured data shown in Figure 4 contain 
contributions from both the AUT and the scatterer.  In the 
domain of the CMCs, these two sources are interfering 
constructively and destructively as a function of mode 
index.  After applying the differential phase change to the 
equivalent far-field pattern to mathematically displace the 
AUT so that its phase centre (i.e. aperture) is coincident 
and synonymous with the origin of the cylindrical 
measurement co-ordinate system, the contributions in the 
domain of the CMCs are separated, i.e. displaced so that 
they no-longer interfere with one another.  This is shown in 
Figure 5.  Here, modes associated with the AUT are tightly 
distributed about the n = 0, i.e. in the centre of the plot, 
whilst the modes associated with the scatterer can be seen 
to be distributed about the n =-75 mode index.  Thus, the 

two sources have been separated, i.e. orthoganalized in the 
CMC domain. 

 
Figure 5 – B1 CMCs once the AUT has been 
conceptually translated to the origin of the 

measurement co-ordinate system. 

Furthermore, as the mode coefficients associated with the 
AUT are within the k0rt0 region of mode space, any 
coefficients outside of this region of the domain can be 
removed without prejudice to the far-field antenna pattern 
function.  Although the filtering is normally based on the 
aperture size of the antenna this may be increased for 
analysis purposes up to a limit determined by the near-field 
data point spacing as shown here.  Figure 6 below contains 
a plot of the CMCs after filtering. 

 
Figure 6 – B1 CMCs shown after MARS filtering. 

In this case, the minimum cylinder which contains the 
translated antenna aperture causes the cylindrical MARS 
processing to filter out all higher order modes above |N| = 
31 as these modes can not be part of the antenna’s far-field 
radiation pattern.  Although not shown herein, similar plots 
can be created for the linearly independent set of B2 CMCs.  
Figure 7 contains a plot of the probe corrected far-field 
pattern of the AUT that is obtained from the cylindrical 
near-field data prior to cylindrical MARS filtering.  Here, it 
is clear that with the reflecting panel, the measurements 
contain significant range multi-path with a large response 
being visible at Az = 80°, El = 0° originating from the 
spectral reflection from the panel.  The reflections at -150° 



to -70 deg in Az are most likely a result of the scattering off 
the side of the RF equipment rack that is situated 
immediately outside the small chamber as no door is fitted. 

 
Figure 7 – Far-field pattern of x-band 

slotted waveguide array antenna. 

Figure 8 contains an equivalent plot that was obtained using 
the same cylindrical near-field data set as was used above 
only this time; the cylindrical MARS process was 
employed to filter out artefacts arising from range multi-
path. 

 
Figure 8 – Far-field pattern of x-band slotted waveguide 

array after MARS processing. 

From inspection, it is quite evident that the main specula 
reflection that was evident at Az = 80°, El = 0° has been 
almost completely suppressed.  Furthermore, the high 
frequency angular ripple that was evident in the unfiltered 
results is clearly absent in this result, which is very 
encouraging.  Due to the large measurement radius and the 
comparatively short travel of the linear scan axis, 3’, these 
patterns suffer a significant amount of truncation the 
elevation plane and the pattern data at larger angles is 
rendered unreliable as a result of the onset of the first order 
truncation effect [10]. 
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Figure 9 – Far-field pattern of x-band slotted waveguide 

array shown before, and after MARS processing. 

From inspection of Figure 9, it is very evident that the 
comparison of the azimuth cuts with, and without MARS 
filtering it can be seen that the spurious reflection at 80° 
has been suppressed by more than 25 dB.  Again, it is clear 
that the overall spurious high frequency ripple that is 
evident on the red trace can be seen to have been 
suppressed on the blue, MARS filtered trace.  By way of a 
further illustration Figure 10 contains a comparison plot of 
AUT measured without the reflecting plate, which is used 
as a reference “truth model”, and the MARS filtered 
measurement with the reflecting plate.  Here, red contours 
(i.e. isolevels) are used to denote the cylindrical MARS 
filtered antenna pattern without the reflecting plate whilst 
the black contours denote the cylindrical MARS filtered 
antenna pattern with the reflecting plate.  The respective 
sets of contours have been plotted at -40, -30, -20, -10, -5, -
3, -2, -1 dB levels.  Again the degree of agreement is very 
encouraging with differences becoming visible at large 
elevation angles where the pattern data is outside the range 
of validity and for regions of lower field intensities. 
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Figure 10 – Comparison of MARS filtered without plate 

and MARS filtered with plate results. 

We can obtain a more concise graphical display by 
selecting the γ = 0 CMCs which correspond to the 
maximum amplitude and plot a graph of the mode 
amplitude versus the mode number n.  Table 1 below shows 
a mode plot for the reference truth model data, c.f. Figure 5 
for γ = 0. 
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Table 1 –Cylindrical MARS Results 
without reflecting plate 

Here, the groupings of CMCs that are associated with the 
reflecting plate are absent and the equivalent far-field 
azimuth plot is also free of the large specular response that 
is clearly present within the unfiltered pattern data.  Table 2 
below contains similar data from a series of measurements 
that were taken with the reflecting plate installed within the 
chamber.  During each of these measurements, the only 
parametric change that was introduced was in the 
displacement between the origin of the measurement co-



ordinate system and the phase centre of the AUT.  The 
purpose of this was to try and establish a relationship 
between this displacement and the location of the scattering 
CMCs. 
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Table 2 – Summary of Cylindrical MARS Displacement 
Results with reflecting plate 

From inspection of the figures contained within Table 2, it 
can be seen empirically that the centre of the distribution of 
CMCs that are associated with the scatterer (plotted in blue 
and visible to the left hand side of the mode plots) are 
approximately located at, 
 zkn Δ= 0  (16) 
Here, Δz denotes the offset between the centre of rotation 
and the AUT.  Strictly, the modes are located at negative 
mode indices but this is only an artefact of the location of 
the reflecting plate within the chamber.  If the scatterer 
were to have been located on the opposite side of the 
chamber, then the distribution would correspond to positive 
mode indices.  Crucially, irrespective of where the scattered 
modes are, the effect of the MARS process is to moves that 

are associated with scattering object to larger magnitude 
mode indices, i.e. their distributions move away from n = 0.  
By way of confirmation, using Equation 14 for the 
measurements presented within Table 2, and rounding 
towards the nearest largest integer, yields the following 
results: (Δz = 8.0”, n = 40), (Δz = 9.5”, n = 47), (Δz = 12.0”, 
n = 59), (Δz = 13.0”, n = 64), (Δz = 15.0”, n = 74). All of 
these results are in agreement with experiment.  Thus, we 
would want to insure that Δz is sufficiently large so that 
lowest order modes associated with the scatterer are outside 
the mode spectrum occupied by the AUT.  When γ = 0, 
once translated back to the origin of the measurement 
system, the AUT occupies the mode spectrum, 
 0000 tt rknrk ≤≤−  (17) 
Where rt0 is the maximum radial extent (this is the 
conceptual maximum radial extent when the AUT is 
optimally installed in the range with its phase reference 
coincident and synonymous with the origin of the 
measurement co-ordinate system). Hence we need to insure 
that the following condition is satisfied, 
 000 trkzk >>Δ  (18) 
Specifically, as the quantity k0Δz merely locates the 
nominal centre of the distribution, to insure that the 
outlying modes are also separated from the AUT, it is 
reasonable to adopt the following measurement criteria, 
 000 2 trkzk >Δ  (19) 
Or simply that, 
 02 trz >Δ  (20) 
Stated simply, the displacement must be larger than the 
diameter of the conceptual optimum MRE.  In our case, this 
corresponds ensuring the displacement is at least a large as 
the diameter of the AUT and preferably larger.  One way of 
viewing this it to suppose that the scattered mode spectra 
have the same range of modes as the AUT which is not 
unreasonable as (in the absence of any other independent 
sources) the scatterer is in essence merely a reflection of 
the AUT and we are able to determine a rule of thumb for 
the size of the displacement. 

5. Summary, Conclusions, and Future Work 

Cylindrical MARS processing can be used with a good 
degree of confidence since all the steps in the measurement 
and analysis are consistent with the well established 
principles of the cylindrical near-field theory and 
measurement techniques, and all comparisons have proved 
overwhelmingly positive.  The offset of the AUT and the 
resulting smaller data point spacing are valid if the spacing 
satisfies the sampling criteria.  The translation of the far-
field pattern to the origin with the phase shift is rigorous.  
The selection of the mode cut-off for the translated pattern 
is based on the physical dimensions of the AUT and its 
translated location.  The recommended mode cut-off is 
calculated from the AUT dimensions but can be modified 
by the user if the spherical mode plots, e.g. Figure 5, 
suggest a different cut-off is required.  The results of the 
cylindrical MARS processing will always reduce, but not 
entirely eliminate, the effective of scattering.  The final 



result with cylindrical MARS can be degraded if the 
sampling of the near-field data is too large, or the mode 
filter is too small, but this is also true for regular cylindrical 
processing. Importantly, both of these parameters are 
controlled by the user and must be correctly specified. 

NSI has developed and validated a novel technique to 
suppress reflections in cylindrical near-field ranges.  The 
technique is quite general and can be used to achieve 
acceptable results with use of minimal absorber or even 
with no anechoic chamber.  It can also improve the 
reflection levels in a traditional anechoic chamber by 10 dB 
or more, allowing improved accuracy as well as the ability 
to use existing chambers down to lower frequencies than 
the absorber used might indicate. 

NSI has now developed reflection suppression techniques 
that are highly effective at improving measurements taken 
in spherical and now cylindrical near-field ranges.  Work is 
ongoing to develop similar techniques for use with planar 
facilities. 
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